
Middlebox Driven Security Threats in Software Defined Network

Sungmin Hwang and Kyungbaek Kim

Dept. Electronics and Computer Engineering
Chonnam National University
Gwangju, Republic of Korea

Sungmin1511@gmail.com, kyungbaekkim@jnu.ac.kr

Abstract

As future internet, Software Defined Network (SDN) has
brought special benefits which are hard for legacy network
system by separating control plane from data plane. A SDN
controller manages network flows in centralized manner
by applying proper rules dynamically on each flow.
However, this distinct feature of SDN has brought several
security issues. One of these issues is related to middleboxes
which are commonly used to secure or manage the
networks in legacy network systems. Middleboxes modify
the information of packet dynamically based on their own
policies, but the modification is hidden from outside
network components because of the closed structure of
middleboxes. According to this, a SDN controller does not
recognize the modification of packets and may apply
wrong rules to a flow. In this paper, we explore possible
security problems caused by middleboxes and possible
solutions for the problems.

Keywords-Software Defined Network; middlebox; security

I. Introduction

Due to various internet services and growth in internet user
population, Software Defined Network (SDN) has been
suggested to satisfy the demands which are hard for legacy
networks to provide [1]. SDN separates control plane and data
plane, and enables a SDN controller to control the network in
centralized way. The SDN controller checks the network state
and enforces flows by the policies it holds. This dynamic
enforcement of flows helps to use the network more efficiently,
and provides special benefits [1].

In legacy network systems, middleboxes are commonly used
to provide distinct services such as filtering malicious traffics,
network address translation, load balancing, and intrusion
detection [7][8]. They examine the packet and sometimes, they
change or filter the packet. This modification of packet has
brought challenges to SDN which requires the exact
information of packets to make a decision for applying which
policies to which flows. Legacy networks also had this problem
with middleboxes, but this became more serious in SDN

because the main identity of SDN is to enforce policies for
network management tasks [1].

In SDN, a switch pushes a packet to a SDN controller when it
does not have any matched entry in its flow table. The
controller decides where this flow will be headed to, or how the
flow should be modified by checking the policies controller has.
While this step is taking place, the value compared to match
flow and policy is often stored in packet header. IP and ports
can be examples. To apply the right policy and setup the right
path, the information should be imported correctly to the
controller.

However, middleboxes, such as Network Address Translator
(NAT) and proxy server, can sometimes interrupt a SDN
controller from having the exact view of the network. They
often change the packet header that holds vital information for
finding source of the packet, and this may harm right decision
for applying policies. Whenever modification and filtering
happens in middleboxes, non-transparent design of them
prevents explanation why and what happened inside the
middleboxes and this brings information block to the controller.
This refers that the controller does not fully know what happens
in the network and cannot make decision whether if the flow is
appropriate to its security policies.

This characteristic of middleboxes can cause security
breaches in some cases, and this shows need of inspecting
detailed process and factors of these middlebox-driven security
problems. Also, how to maintain or improve security under the
circumstances and how to interact with middleboxes should be
concerned. We explain what causes the problems in section2,
and describe possible solutions in section 3, then discuss about
more possible cases from middleboxes.

II. Middlebox-Driven Security Problems

A. Failures in Applying Correct Rules

SDN requires correct and stable information of a packet such
as source IP to decide the path for the packet dynamically. In
normal cases, it is easy to check the information by examining
packet header information that an OpenFlow switch sends to a
SDN controller. But in some cases where middleboxes are
involved, this process becomes hard, due to difficulty of

ISITC 2014 ◎◎ 105

finding the real information. Since middleboxes change the
packet header by their own decision and they do not provide
why and from what the packet has been changed, this can cause
not only disable load balancing, but also enable unintended or
intended penetration of security policies. Here, we list possible
middlebox-driven security threats.

Case of using NAT:

NAT is a technology that rewrites TCP/UDP port number
and source/destination IP of a packet during communication
through the router. NAT makes modification to the packet, and
this needs recalculation of IP and checksums. NAT is usually
used for matching private network hosts to public IP, and this is
very useful and needed for recent network environment. To
SDN, this modification of a packet by NAT makes a controller
hard to apply its policies to the packet. To make right decision,
the controller needs to check the real information, but NAT
translates IPs of hosts to public IPs by modifying the packet
header. The controller can only identify the public IPs so that if
the policy is to check the source and change the flow to make
quarantine or send to firewalls, this checking process have a
chance to fail the filtering the packet and installing the right
rules. This can cause serious security problem since this can
allow the access of hostile hosts. Fig. 1 shows how this can
happen in network. Private IP and public IP matching is not
informed to the controller, making controller hard to identify
where the packet is coming from. This makes controller unable
to apply the policy to the packet from host2.

Another problem with NAT is increasing the complexity of
checking rule conflicts by a SDN controller. Sometimes a SDN
controller adds a module which checks every flow rules and

calculates whether if there is any combinations of rules that
derive rule conflicts [5]. For example, as Fig. 2 illustrates, it is
assumed that a firewall is placed between the controller and
hosts, and blocks a certain access. Even though the firewall
works perfectly, the change of source/destination IP address by
controller’s rules can sometimes lead to security penetration.
That is, chaining of the rules can derive a rule that enables a
host to access the blocked target. The module of checking rule
conflicts may detect the derivation of rules for security
penetrations. However, in the setting with NAT, checking rule
conflicts becomes more complex or impossible because NAT
also dynamically modifies the information of packets. To check
rule conflicts correctly the module should check NAT IP
matching rules, but as discussed earlier, this is not possible if
middle boxes do not provide sufficient information.

One more thing to consider is monitoring the traffic, since it
is essential part for making security related decisions. For an
example, if there are too many connections established by one
host, we can assume the host as suspicious target which should
be analyzed. But if IDS (Intrusion Detection System) cannot
correctly distinguish the origin of a suspicious flow which is
modified by NAT, it is hard to measure the exact count of
connections. This incorrect information of number of
connections makes a SDN controller difficult to apply its
policies for security.

Case of using Proxy:

Proxy enables clients indirectly connect to other network
services. It is located between server and clients and stores the
requested contents in the cache. From this cache, clients can
access to stored data without connecting to the server again,
and this helps proxy to provide more efficiency to users.
However, for security purposes, this can cause some security
problems. In Fig.3, the controller wants to apply rules for
incoming packets that make the path which goes through a
firewall to detect and block packets from blacklisted hosts. If
the proxy lies between the firewall and host, blocked host need
not to go through the detection system to access the server
beyond the firewall. Instead, the host can just connect to the
cached data, which has been originally requested by other hosts.
This case shows that a proxy can provide attackers a way to
bypass security systems.

Also, another common purpose of using proxy server is to

Fig. 3 Proxy server’s cached data allows abnormal access to
blocked path

Fig. 1 Difficulty of getting right information from the packet which
has already processed by NAT

Fig. 2 NAT makes checking rule conflicts more complex

ISITC 2014 ◎◎ 106

hide the real identity of the user including the IP address of the
host. One of the reasons of using this function is to provide the
security to the hosts using proxy server. But in this case, the
origin of the packet is hidden and this lacks the information for
the controller to make right decision for whole network.

B. Closed structure

SDN’s crucial feature is to dynamically change a path of a
flow by checking information sent to a centralized controller.
This information includes vital parameters that are needed to
decide which policy the controller should apply. For some
security related modules, it requires the history of a flow. The
problem is that middleboxes which are widely used in networks
do not provide enough information to make decisions. The
controller should know the logs, why the packet has been
changed and from what it has been changed, to make right
decision for managing the whole network correctly. This
non-transparent design is responsible for most of the
middlebox-driven security problems. To overcome these
problems, we need a way to have right information which will
bring the right decision to the controller.

III. Possible solutions

A. Adding Information on Packet

To provide right information, one way is to add information
to a packet and use it for applying rules. This direction enables
least changes in switches and avoids direct interfaces between
switches and middleboxes. In this case, middleboxes are
responsible for adding and modifying the additional
information. A SDN controller controls actions of the
middleboxes that are related to processing the information, and
translates the information to apply the policies. This structure
requires modification of middelboxes and controllers, perhaps
for small parts in switches to deal with information.

One example for this solution is FlowTags [4], which
provide more information to the packet to support the vital
information the controller needs. Like the things we can
commonly observe in the market, it suggests tags, which reveal
the information needed for the controller to make right
decisions. A FlowTag is generated by a middlebox, and
contains information which will be used by the controller and
other middleboxes to apply policies. A FlowTag can be
implemented in 6bit ToS/DSCP field due to space limitation in
packet headers [4].

Middleboxes follow the action instruction rules from the
controller when processing tags, and if there is no matching tag
rule for the packet, it requests controller through the
southbound API and gets the rule from the controller.
Processing tags is done by the module which uses
‘session-oriented’, popular architecture among middleboxes, to
support the actions and to maintain compatibility.

Controller supports tagging instruction rules for middleboxes,
and tag translation for decoding information. For the switches,
they just need to match on packet header fields defined by
OpenFlow.

FlowTags suggest the structure which helps switches and
middleboxes to innovate independently. Also, compatibility

with existing machines has been concerned from using easier
ways to implement modules to legacy middleboxes.

However, this system brings up some questions. Even though
the tags are added to the packet and reports middleboxes’
information, controller many not fully understand why they
have done the process. This misunderstanding of the actions
can block the functionality of the middleboxes by tagging only
partial information.

Also, even though it tries least modification of existing
network, it requires adding modules to support tags. For real
use, whole connected network should be modified to support
FlowTags.

One more thing to be concerned is delay caused by tagging
process. With no pre-installed FlowTag rules to middleboxes in
this structure, overhead, which comes from installing
instructions to middleboxes, can add another burden to the
performance.

B. Centralized control of middleboxes

Another approach is to have a centralized view and control of
middleboxes in the network. Unified interface lies between
controller and middleboxes, and enables direct communication
between them. This allows the controller to have the whole
view of the network, and make decision by examine what is
taking place in the middleboxes. This includes middleboxes’
policy to change the packet, source of packet, and processed
packet. Some researches focus on improving the performance
of middleboxes using SDN [2] [3]. However, centralized
control plane of middleboxes can be used not only to improve
the performance and fault tolerance [6], but also to improve the
decision making of the SDN controller. Controller can
understand the full process of middleboxes and can apply right
policy and install rules to switches. If there is interactive
connection between controller and middleboxes, the controller
can also dynamically modify the rule to support proper
functions to middleboxes.

Centralized control of middleboxes shows many features, but
also leads to some challenges. There exist many kinds of
middleboxes, which makes it hard to provide right interface
between controller and middleboxes. Structure and control
logic differs from product to product and venders from vendors.
These heterogeneous results in very complex process to
produce unified control, and may not fully support middlebox’s
functions. Also, vendors do not want to expose their internal
structure and logic since it is their intellectual property, and this
may cause miscommunication between controller and
middleboxes. Centralized control may also suffer from its
structure, when single point of failure happens. When the
controller fails, every control including the middleboxe will be
failed and malfunction.

However this can bring new security threats, since it works in
centralized way. An access to controller can have the control of
full connected middleboxes to modify the packets. This refers a
need of proper protection for accessing the controller. Also,
some middleboxes’ main purpose is to hide the information for
users, and this centralized control may enforce them to give up
the benefits.

Also, performance issues can be brought up by controlling
more dimensions. Adding more information and targets to

ISITC 2014 ◎◎ 107

control makes the control process much more complex.

IV. Discussion

A. Possible security threats of suggested solutions

Hostile intrusion and modification to middleboxes under
centralized environment can enable attackers to learn the
information of the controller by checking the communication.
Observing and making queries to controller can help attackers
to identify what kind of policy does the controller have, and this
information can be used to ignore or bypass the policy. This
also can be used for packet tagging cases.

Attempt to control without full understanding of internal
security logic of middleboxes, can cause serious security
breaches from causing malfunction of the middleboxes. Some
of them use abnormal and special way to detect and provide
security and this can be compromised by inappropriate control
by the controller. Also, preventing middleboxes from collision
between themselves should be concerned to secure their
functionality.

In addition, Proper encryption of connection between
controller and middle boxes should be supported, since the
exposure of added information can be used to attack the
middleboxes’ logic and controller’s policies. No verification of
secure connection have been done yet, and standard has not
been suggested either.

B. Keeping Functionality of Middleboxes

In some middleboxes, their main purpose is to hide
information of the traffic source to keep the traffic generator
safe. If the middleboxes can be centrally controlled and
observed by control application, this may violate the goal of the
middlebox functions and bring collision. To make the right
decision for policy, some vital information is needed, but
gaining information process should not harm the functionality
of middleboxes. This should be concerned when implementing
cetralized system.

V. Conclusion
SDN is suggested as a future internet and can bring us many

benefits to overcome current network environment. However,
the current middleboxes cause some security threats by
providing insufficient information to SDN controllers. Listed
problems are originated from non-transparent design, and
solutions for them are to have a transparent view of
middleboxes. This can be done by adding vital information to
packets, or centrally and directly controlling middleboxes by a
controller. In some cases, these solutions may harm purposes of
middleboxes and can sometimes cause additional problems.
This refers proper level of encapsulation is needed for the
middle boxes while maintaining the functionality of SDN
controllers. Examination of the suggested systems for a secure
SDN network should be done to suggest more advanced
system.

VI. Future Works

For next research, we will focus on designing the centralized

control structure which centrally gets the information from
every connected middleboxes. This will bring the listed
challenges in section3, and to solve and reduce the problem, a
new way to secure the information should be suggested. Also,
we will try to find solution, which allows controller to get
information while functionality and purpose of middleboxes
remain.

Acknowledgements

This research was supported by the Building and Operation
KREONET and advancement of Service (K-14-L01-C03) of
the Korea Institute of Science and Technology Information
(KISTI) funded by the Ministry of Science, ICT & Future
Planning.

References

[1] Opennetworking.org, “Software defined networking: the new
norm for networks,” 2012, [accessed August 2014]

[2] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward
software-defined middlebox networking,” HotNets, 2012,
pp.7-12.

[3] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,”
SIGCOMM, 2013, pp.27-38.

[4] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul,
“FlowTags: enforcing network-wide policies in the presence of
dynamic middlebox actions,” HotSDN, 2013, pp. 19-24.

[5] P. Porras, S. Shin, V, Yegneswaran, M. Fong, M. Tyson, and G.
Gu, “A security enforcement kernel for OpenFlow networks,”
HotSDN, 2012, pp. 121-126.

[6] A. Gember, T. Benson, and A. Akella, “Challenges in unifying
control of middlebox traversals and functionality,” LADIS, 2012.

[7] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar, “Making middleboxes someone else’s problem:
Network processing as a cloud service,” SIGCOMM, 2012.

[8] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The
middlebox manifesto: enabling innovation in middlebox
deployment,” HotNets, 2011.

ISITC 2014 ◎◎ 108

